1. A hydrocarbon fuel is fully combusted with 18.214 g of oxygen to yield 23.118 g of carbon dioxide and 4.729 g of water. Find the empirical formula for the hydrocarbon.
$\left.\begin{array}{l}23.118 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g} \mathrm{CO}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.52528 \mathrm{~mol} \mathrm{C} \div 0.52515 \approx 1 \mathrm{~mol} \mathrm{C} \\ 4.729 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.52515 \mathrm{~mol} \mathrm{H} \div 0.52515=1 \mathrm{~mol} \mathrm{H}\end{array}\right\} \quad \mathrm{CH}$
2. After combustion with excess oxygen, a 12.501 g of a petroleum compound produced 38.196 g of carbon dioxide and 18.752 of water. A previous analysis determined that the compound does not contain oxygen. Establish the empirical formula of the compound.
$38.196 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g} \mathrm{CO}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.86787 \mathrm{~mol} \mathrm{C} \div 0.86787=1 \mathrm{~mol} \mathrm{C}$
$18.752 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.0817 \mathrm{~mol} \mathrm{H} \div 0.86787=2.3996 \mathrm{~mol} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{C} \times 5=5 \mathrm{~mol} \mathrm{C}$
$2.3996 \mathrm{~mol} \times 5=11.998 \approx 12 \mathrm{~mol} \mathrm{H}\} \mathbf{C}_{5} \mathbf{H}_{12}$
3. In the course of the combustion analysis of an unknown compound containing only carbon, hydrogen, and nitrogen, 12.923 g of carbon dioxide and 6.608 g of water were measured. Treatment of the nitrogen with H_{2} gas resulted in $2.501 \mathrm{~g} \mathrm{NH}_{3}$. The complete combustion of 11.014 g of the compound needed 10.573 g of oxygen. What the compound's empirical formula?
$12.923 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g} \mathrm{CO}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.29363 \mathrm{~mol} \mathrm{C} \div 0.1468 \approx 2 \mathrm{~mol} \mathrm{C}$
$6.608 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.7334 \mathrm{~mol} \mathrm{H} \div 0.1468 \approx 5 \mathrm{~mol} \mathrm{H} \quad \mathbf{C}_{2} \mathbf{H}_{5} \mathbf{N}$
$2.501 \mathrm{~g} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.04 \mathrm{~g} \mathrm{NH}_{3}} \frac{1 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=0.1468 \mathrm{~mol} \mathrm{~N} \div 0.1468=1 \mathrm{~mol} \mathrm{~N}$
4. 12.915 g of a biochemical substance containing only carbon, hydrogen, and oxygen was burned in an atmosphere of excess oxygen. Subsequent analysis of the gaseous result yielded 18.942 g carbon dioxide and 7.749 g of water. Determine the empirical formula of the substance.
mass $\mathrm{C}=18.942 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g} \mathrm{CO}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=5.1694 \mathrm{~g} \mathrm{C}$
mass $\mathrm{H}=7.749 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \frac{1.016 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.8669 \mathrm{~g} \mathrm{H}$
mass $\mathrm{O}=12.915 \mathrm{~g}-5.1694 \mathrm{~g} \mathrm{C}-0.8669 \mathrm{~g} \mathrm{H}=6.879 \mathrm{~g} \mathrm{O}$
$\mathrm{mol} \mathrm{C}=5.1694 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=0.43039 \mathrm{~mol} \mathrm{C} \div 0.4299 \approx 1 \mathrm{~mol} \mathrm{C}$
$\left.\operatorname{mol~H}=0.8669 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=0.8600 \mathrm{~mol} \mathrm{H} \div 0.4299 \approx 2 \mathrm{~mol} \mathrm{H}\right\} \mathbf{C H}_{\mathbf{2}} \mathbf{O}$
$\mathrm{mol} \mathrm{O}=6.879 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.4299 \mathrm{~mol} \mathrm{H} \div 0.4299=1 \mathrm{~mol} \mathrm{O}$
5. 33.658 g of oxygen was used to completely react with a sample of a hydrocarbon in a combustion reaction. The reaction products were 33.057 g of carbon dioxide and 10.816 g of water. Ascertain the empirical formula of the compound.
$33.057 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.011 \mathrm{~g} \mathrm{CO}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.75111 \mathrm{~mol} \mathrm{C} \div 0.75111=1 \mathrm{~mol} \mathrm{C}$
$10.816 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.2007 \mathrm{~mol} \mathrm{H} \div 0.75111=1.5986 \mathrm{~mol} \mathrm{H}$
$1 \mathrm{~mol} \mathrm{C} \times 5=5 \mathrm{~mol} \mathrm{C}$
$1.5986 \mathrm{~mol} \mathrm{H} \times 5 \approx 8 \mathrm{~mol} \mathrm{H}\}$
